The tree property and the failure of the Singular Cardinal Hypothesis at ℵω2

نویسنده

  • Dima Sinapova
چکیده

We show that given ω many supercompact cardinals, there is a generic extension in which the tree property holds at אω2+1 and the SCH fails at אω2 .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Aronszajn Trees and Failure of the Singular Cardinal Hypothesis

The tree property at κ states that there are no Aronszajn trees on κ, or, equivalently, that every κ tree has a cofinal branch. For singular strong limit cardinals κ, there is tension between the tree property at κ and failure of the singular cardinal hypothesis at κ; the former is typically the result of the presence of strongly compact cardinals in the background, and the latter is impossible...

متن کامل

The tree property and the failure of SCH at uncountable cofinality

Given a regular cardinal λ and λ many supercompact cardinals, we describe a type of forcing such that in the generic extension there is a cardinal κ with cofinality λ, the Singular Cardinal Hypothesis at κ fails, and the tree property holds at κ.

متن کامل

Aronszajn trees and the successors of a singular cardinal

From large cardinals we obtain the consistency of the existence of a singular cardinal κ of cofinality ω at which the Singular Cardinals Hypothesis fails, there is a bad scale at κ and κ++ has the tree property. In particular this model has no special κ+-trees.

متن کامل

Tree Property at Successor of a Singular Limit of Measurable Cardinals

Assume λ is a singular limit of η supercompact cardinals, where η ≤ λ is a limit ordinal. We present two forcing methods for making λ+ the successor of the limit of the first η measurable cardinals while the tree property holding at λ+. The first method is then used to get, from the same assumptions, tree property at אη2+1 with the failure of SCH at אη2 . This extends results of Neeman and Sina...

متن کامل

The tree property at double successors of singular cardinals of uncountable cofinality

Assuming the existence of a strong cardinal κ and a measurable cardinal above it, we force a generic extension in which κ is a singular strong limit cardinal of any given cofinality, and such that the tree property holds at κ++.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Symb. Log.

دوره 77  شماره 

صفحات  -

تاریخ انتشار 2012